Computer-Aided Engineering

Adapted from

C.N.Nightingle and J.K.Fidler ., Computer-Aided Circuit and System Design., U.K +IEEE papers

Lecture 5

Prof.Dr.Eng.ARN

Consider a ladder network consisting of n branches and excited by a voltage source E as shown in Figure

General n-branch doubly terminated ladder network

Applying Kirchhoff's voltage and current laws alternately leads to the following equations:-

$$E = I_{n}Z_{n} + V_{n-1}$$

$$0 = -I_{n} + V_{n-1}Y_{n-1} + I_{n-2}$$

$$0 =$$

$$.$$

$$.$$

$$0 = -V_{3} + Z_{2}I_{2} + V_{1}$$

$$0 = -I_{2} + V_{1}Y_{1}$$

(2.1)

these equations may be rewritten in matrix notations form as:-

or simply as:
$$b = A.x$$
 (2.3)

It can be shown that the determinant of matrix A can be written as a sequence of the following determinant equations:-

$$d_{1} = Y_{1}$$

$$d_{2} = Z_{2} Y_{1} + 1$$

$$d_{3} = Y_{3} (Z_{2}Y_{1}+1) + Y_{1} = Y_{3}d_{2} + d_{1}$$
(2.4)
$$\vdots$$

$$d_{n} = (Z_{n} \text{ or } Y_{n}) d_{n-1} + d_{n-2}$$

<u>Bashkow's Analysis Method for Ladder Networks</u> assuming that $d_0 = 1$, and $d_{-1} = 0$. d_n is the value of the determinant of A. Now assuming Cramer's rule to solve equation (2.3) for the x_i , i.e. I_i or V_i , where i = 1, 2, 3, ..., n, gives: $x_i = \frac{A_i}{A}$ (2.5)

where $\Delta = d_n$, and Δ_i is the matrix in which the i'th column of matrix A is replaced by vector b.

From Figure 2.1, the voltage transfer function of the ladder is:-

$$F(s) = \frac{V_1}{E}$$
 (2.6)

Using Cramer's rule to find the voltage transfer function leads to the following;-

1. Replace the b-matrix in column n of A as:-

(2.7)

 $^{\Delta}n$

1

12/19/2015

(2.8)

or

$$\Delta_n = -E \cdot M \tag{2.9}$$

The determinant of matrix M is equal to -1 as the product of the principle diagonal elements, i.e.

therefore
$$F(s) = \frac{V_1}{E} = \frac{\Delta_n}{\Delta} \cdot \frac{1}{E} = \frac{1}{\Delta} \cdot \text{ Or in general}$$

 $(V_k \text{ or } I_k)/E = d_{k-1}/\Delta = \frac{d_{k-1}}{d_n}$ (2.11)

12/19/2015

12 101

<u>Bashkow's Analysis Method for Ladder Networks</u> Each branch $(Z_k \text{ or } Y_k)$ IM will be considered as a ratio of two polynomials in the complex frequency variable, i.e.

$$IM_{k} = \frac{N_{k}(s)}{D_{k}(s)}$$
 (2.12)

Substituting (2.12) into individual sequence of the determinants d

of (2.4) gives:-

$$d_{1} = \frac{N_{1}(s)}{D_{1}(s)}$$
$$d_{2} = \frac{N_{2}(s)}{D_{2}(s)} \cdot \frac{N_{1}(s)}{D_{1}(s)} + 1$$

$$= \frac{N_{2}(s)N_{1}(s) + D_{1}(s)D_{2}(s)}{D_{1}(s)D_{2}(s)}$$

or in general

$$A_{k} = \frac{A_{k}(s)}{B_{k}(s)} = \frac{N_{k}(s)}{D_{k}(s)} \cdot \frac{A_{k-1}(s)}{B_{k-1}(s)} + \frac{A_{k-2}(s)}{B_{k-2}(s)}$$

12/19/2015

11

(2.13)

$$A_{k}(s) = D_{k}(s)D_{k-1}(s) \dots D_{l}(s)$$

hence $A_{k-1}(s) = N_{k-1}(s) A_{k-2}(s)$ (2.14)

and
$$B_{k-1}(s) = D_{k-1}(s) B_{k-2}(s)$$

Taking into consideration equations (2.14) and substituting them into equation (2.13), it follows that an expression is obtained without common factor as:-

$$d_{k} = \frac{N_{k}(s) A_{k-1}(s) + D_{k}(s) D_{k-1}(s) A_{k-2}(s)}{D_{k}(s) D_{k-1}(s)}$$
(2.15)

where $A_0 = B_0 = D_0 = 1$ and $A_{-1} = 0$, k = 1, 2, ..., n.

Thus:-

$$F(s) = \frac{V_{\perp}}{E} = \frac{1}{d_{n}} = \frac{B_{n}(s)}{A_{n}(s)}$$

$$= \frac{D_{n}(s) D_{n-1}(s) \dots D_{1}(s)}{A_{n}(s)}$$

12/19/2015

The formulation of (2.15) provides a simply programmed method of evaluation $d_k = \frac{A_k(s)}{B_k(s)}$, therefore the required voltage transfer function

is found as:-

$$F(s) = \frac{B_k(s)}{A_k(s)}$$
 (2.17)

Equation (2.11) can be used to evaluate the other network functions: in the present application, only the voltage transfer function is required.

```
Input data corresponding LCR-prototype topology
No.branches?4
Analyses required till termination 71E12
No.coeffs in num & den (Max:14,14) 23,4
Num coeffs(specification): (Lowest degree 1st):
1,0.112525,0.123951
Den coeffs(specification): (lowest degree 1st)=1:
1, 1. 463014, 1. 091287, 0. 574221
Req'd den const(DCFL): ?4
Lossy(0) or Lossless(1) realizaton reg'd:70
Topology 1,2,3,4,5 OR 5
Branch 171
Value :R(Even)/G(Odd)?1
Branch 273
Value :L?1
Branch 374
Values:L,1/01,R1,C,1/0c,Gc,G1?1,0,1,1,0,0,0
Branch 475
Values:L.Rs?1,1
```

Optimization strategy required ************** Least square method:1 Fletcher-Fowell method:2? Read i/p data for E04GAF 1-s optm.method Method 1, 2, 3=?1 Iter-print 0,1=70 Maxcal=71E12 Ifail=? 0

Final sum of squares is .8150598E-14

At the prototype element values 3,000000 0.694954 0.1015101.221068 0.0921530.698675Residuals are 0,000000 0,000000

0.00000

12/19/2015

This has error number () End of E04GAF optimization process

No.of VTF analyses were: 132

1

Num coeffs (Lowest degree 1st) :

- 1.000000E+005^0
- 1.125250E-01s^1
- 1.239510E-01s^2

Den coeffs (Lowest degree 1st) :

- 4.000000E+00s^0
- 5.852056E+00s^1
- 4.365148E+00s^2
- 2.296884E+00s^3

Coefficient sensitivity analysis:

Elem:	1 : Num:	.000000E+00	.000000E+00	.000000E+00	
	Den:	.750000E+00	.77211 <mark>5E+</mark> 00	.776163E+00	.100000E+01
Elem:	2:Num:	.000000E+00	.000000E+00	.000000E+00	
	Den:	.000000E+00	.356262E+00	.636945E+00	.886888E+00
Elem:	3:Num:	.000000E+00	.000000E+00	.100000E+01	
	Den:	.000000E+00	.000000 <mark>0E+00</mark>	.113582E+00	.225621E+00
Elem:	4:Num:	.000000E+00	.100000E+01	.100000E+01	
	Den:	"000000E+00	.285569E+00	.100000E+01	.100000E+01
Elem:	5:Num:	,000000E+00	,100000E+01	,000000E+00	
	Den:	,000000E+00	.769131E-01	.107775E+00	.000000E+00
Elem:	6:Num:	,000000E+00	.000000E+00	.000000E+00	
	Den:	.000000E+00	.358169E+00	.249473E+00	.887491E+00
Elem:	7:Num:	,000000E+00	.000000E+00	"000000E+00	
	Den:	.750000E+00	.266341E+00	.668388E+00	.000000E+00

Transfer function sensitivites analyses: No.of frequency ranges?1

Start, stop freqs. (Rad/sec) 70,5

No.points do you want: (Max=500)?500

Amp1	T.F sens	51 (maximum	(Range	0.0 to	5.0 Rad/se	c) AT W	↓=1
	Elem.	1:	-0.9	904 at	5.0000	Rad/s	-0.62	295
	Elem,	2:	-1.0	321 at	1.8100	Rad/s	-0.09	28
	Elem.	3:	1.6	232 at	3.4500	Rad/s	-0.00	91
	Elem.	4:	-2.2	316 at	2.2900	Rad/s	-0.07	36
	Elem.	5:	0.9	681 at	2.8400	Rad/s	-0.12	25
	Elem.	6:	-0.8	494 at	5.0000	Rad/s	-0.04	72
	Elem.	7:	-0 _* 7	500 at	0.0000	Rad/s	-0 . 43	15
Max.	Ampl.T.F	- u (sensitiv	ity:	-2.2316	at 2.2900	Rad/sec'	- Elem.
Max.4	Ampl.sens	5 n (at W=1 R	ad/sec	: -0.6	295 - Elem	1	с. 1 1

4

FDNR sensitivity required ?1

```
Branch 1:
Elmt. 1:C:.300000E+01
Branch 2:
Elmt. 2:R:.6949541E+00
Branch 3:
Elmt. 3:R:.1015103E+00
FDNR ellipt, 4, 5 and 6 : C1(&C3) and R2:.2170306E+02.2592376E-02
Branch 4:
Elmt. 7:R:.6986751E+00
Elmt. 8:C:.1000000E+01
```

Rmax	is	n 5		6.986751E-01	Rmin is :	2.592376E-03
Cmax	is	8 \$7		2.170306E+01	Cmin is :	1.000000E+00
R-spr	eac	l is	e g	2.695115E+02	C-spread is :	2.170306E+01